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FIXED POINT THEOREM FOR AN INFINITE TOEPLITZ

MATRIX

VYACHESLAV M. ABRAMOV

Abstract. For an infinite Toeplitz matrix T with nonnegative real en-
tries we find the conditions, under which the equation x = Tx, where x

is an infinite vector-column, has a nontrivial bounded positive solution.
The problem studied in this paper is associated with the asymptotic
behavior of convolution type recurrence relations, and can be applied
to different problems arising in the theory of stochastic processes and
applied problems from other areas.

1. Introduction

Let T be an infinite Toeplitz matrix with nonnegative real entries

(1) T =











t0 t−1 t−2 · · ·
t1 t0 t−1 · · ·
t2 t1 t0 · · ·
...

...
...

. . .











.

The aim of this paper is to find the conditions under which

(2) x = Tx, x =







x0
x1
...







has a bounded positive solution. Since the solution x = 0, where 0 is the
infinite-dimensional vector of zeros, is a trivial solution, we seek the only
positive solutions. By positive solutions we mean the solutions x satisfying
the properties xj ≥ 0, j = 0, 1 . . ., and

∑∞
j=0 xj > 0.

The general matrix equations in the form x = Ax or x = Ax+ b, where
A is a finite or infinite positive matrix, x is the vector of unknowns and b

is a known vector have been known for a long time. They are widely used
for solution of various linear equations by the fixed point method, and the
area of their application is wide. They are studied by different mathematical
means including functional and numerical analysis (e.g. [4, 5]), while the
methods that are typically used for the solution of matrix equations are
iterative methods. The detailed discussion of various iteration methods
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can be found in [9]. A widely known application of the matrix equation
x = Ax + b in economy is the input-output model or Leontief model. It
describes a quantitative economic model for the interdependencies between
different sectors of a national economy or different regional economies [6].

The areas of application of matrix equation (2), where the matrix T is
specified as an infinite Toeplitz matrix differ from those mentioned above.
The possible areas of application of (2) include problems from the theory of
stochastic processes that are closely related to the earlier studies in [7]. As
well, they can include applied problems from other areas that use a similar
type of analytic equations.

The problems considered in [7] are based on the convolution type recur-
rence relations. In particular, they describe the probability problems that
appear as an extension of the classic ruin and ballot problems and the prob-
lems on fluctuations of sums of random variables. Further applications of
the convolution type recurrence relations are known in queueing theory (e.g.
[8]), dams theory (e.g. [1]) and many other areas that also considered in [7].

Equation (2) itself with finite or infinite Toeplitz matrix T has not been
earlier studied, and the techniques for the study of equation (2) come from
the theory of the convolution type recurrence relations. Asymptotic analy-
sis of those equations uses analytic techniques of generating functions with
further application of Abelian or Tauberian theorems in their asymptotic
analysis.

For the further discussion, let us recall a theorem in [7, p. 17] presented
here in a slightly reformulated form.

Theorem 1. Let ν1, ν2,. . . , νr,. . . be mutually independent, and identically

distributed random variables taking nonnegative integer values, and Nr =
∑r

j=1 νj . Let tj = P{ν1 = j}, j = 0, 1, . . .. If Eν1 < 1, then

(3) P

{

sup
1≤r<∞

(Nr − r) < k

}

= xk,

where xk = 0 for k < 0, x0 = 1− Eν1, and xk, k = 1, 2, . . ., can be found by

the following recurrence relation

(4) xk =
k

∑

j=0

tjxk−j+1.

The generating function of (4) has the presentation

(5)

∞
∑

k=0

xkz
k =

x0τ0(z)

τ0(z)− z
, −1 < z < 1.

where

τ0(z) =
∞
∑

k=0

tkz
k, −1 ≤ z ≤ 1.
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Notice that recurrence relation (4) can be presented in the form of the
following matrix equation

(6) x = T x̃,

where

(7) T =











t0 0 0 0 · · ·
t1 t0 0 0 · · ·
t2 t1 t0 0 · · ·
...

...
...

...
. . .











,

and

x =







x0
x1
...






, x̃ =







x1
x2
...






.

However, if after an appropriate change of variables we rewrite (4) in the
form:

x−1 = t−1x0 = 1− Eν1,(8)

xk =
k

∑

j=−1

tjxk−j, k = 0, 1, . . . ,(9)

then (9) can be represented as the equation x = Tx, where

(10) T =











t0 t−1 0 0 0 · · ·
t1 t0 t−1 0 0 · · ·
t2 t1 t0 t−1 0 · · ·
...

...
...

...
...

. . .











, x =







x0
x1
...






,

with boundary condition (8).
To motivate a more general equation (2) than that specified with the

particular matrix T given by (10), let us consider the following elementary
extension of Theorem 1.

Theorem 2. Let ν1, ν2,. . . , νr,. . . be mutually independent, and identically

distributed random variables taking nonnegative integer values. Denote Nr =
∑r

j=1 νj . If Eν1 < n, then

P

{

sup
1≤r<∞

(Nr − nr) ≤ k | sup
1≤r<∞

(Nr − nr) ≥ 0

}

= xk, k = 0, 1, . . . ,

where xk satisfies the following recurrence relation

(11) xk =
k+n
∑

j=0

tj−nxk+n−j,

where tj−n = P{ν1 = j}

The proof of Theorem 2 is given in the appendix.
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Remark 3. The formulated theorem does not provide explicit values of x0,
x1,. . . , xn−1, from which recurrence relation (11) starts. In order to have
all these values, we are to present the expression for the unconditional dis-
tribution P

{

sup1≤r<∞(Nr − nr) ≤ k
}

. The derivation of it leads to the
expressions having the complicated nature, and these unnecessary details
lie out of the scope of the present paper.

The expanded form of the recurrence relation (11), which is more conve-
nient for our purpose, is

(12)

x0 = t0x0 +t−1x1 + . . . +t−nxn,
x1 = t1x0 +t0x1 +t−1x2 + . . . +t−nxn+1,
...

...
...

...
...

...
. . .

While for this specific problem the values xk, k = 0, 1, . . . satisfy the condi-
tions: x0 ≤ x1 ≤ . . ., limk→∞ xk = 1, and the sequence tj, j = −n,−n+1, . . .
satisfies the property t−n + t−n+1 + . . . = 1, in our further study of recur-
rence relations (12), the positive values x0, x1,. . . , xn−1 can be chosen with
a higher freedom, and t−n + t−n+1 + . . . is not necessarily equal to 1.

The system of equations (12) can be represented in the form of equation
(2), where the matrix T takes the form

(13) T =











t0 t−1 · · · t−n 0 0 0 · · ·
t1 t0 t−1 · · · t−n 0 0 · · ·
t2 t1 t0 t−1 · · · t−n 0 · · ·
...

...
...

...
...

...
...

. . .











, t−n > 0,

and the study of this equation is central in the paper.
The plan of our study is as follows. Let n = max{j : t−j > 0}. In

Section 2, we formulate the main results. In Section 3, we derive the explicit
representations for the generating function for equation (2) in the case n = 1
and then in the case of arbitrary fixed n. As well, we discuss the existence
of a positive solution of equation (2) under the assumptions on the entries
of the matrix T . In Section 4, we prove the main results of this paper.

2. Main results

The theorem below assumes that n = max{j : t−j > 0} < ∞. Under
this assumption there are infinitely many positive solutions of equation (2).
However, if the first n positive elements x0, x1,. . . , xn−1 of the vector x are
fixed, then the recurrence relations provide a unique solution of equation
(2). Denote

τ−n(z) =
∞
∑

k=0

tk−nz
k, −1 ≤ z ≤ 1.
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Theorem 4. Assume that n = max{j : t−j > 0} < ∞, and

(14)
d

dz
n
√

τ−n(z) increases.

(i) If
∑∞

k=0 tk−n > 1, then all positive solutions are bounded, and

lim
k→∞

xk = 0.

(ii) If
∑∞

k=0 tk−n = 1, then all positive solutions are bounded if and only

if

(15)

∞
∑

k=1

ktk−n < n.

In the case n = 1, if
∑∞

j=1 jtj−1 < 1, then it satisfies the property

(16) lim
k→∞

xk =
x0t−1

1−
∑∞

j=1 jtj−1
.

(iii) If
∑∞

k=0 tk−n < 1, then any positive solution is unbounded.

Remark 5. Here we provide an elementary example for which (14) is satis-
fied. Let tk−n = e−aak/k!, where a is a positive constant. Then τ−n(z) =

ea(z−1), n
√

τ−n(z) = e
a
n
(z−1), and

d

dz
n
√

τ−n(z) =
a

n
e

a
n
(z−1) increases.

Apparently that if in the aforementioned example we assume that a is a
non-decreasing function of z, then (14) will be satisfied. If a is not a non-
decreasing function of z, then (14) can be violated.

Remark 6. In the case when n = max{j : t−j > 0} does not exist, we set
n = ∞. Then the corresponding results can be reformulated as asymptotic
theorems for n → ∞, and in computation of Tx we are to use the required
convergence theorems. Then condition (15) and (14) will be transformed as
follows.

Instead of condition (15) we shall require that

lim
n→∞

1

n

∞
∑

k=1

ktk−n < 1.

Instead of (14), we shall assume that for all large n

d

dz
n
√

τ−n(z)

are increasing functions. Note that a slightly stronger assumption than (14)
is the requirement that

d

dz
log τ−n(z)

increases.
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3. Case studies of equation (2)

3.1. The case when T is presented by (10). In the particular case when
T is presented by (10) we have the recurrence relations are defined by (9).
To make further derivations clearer, we present them in the expanded form:

(17)

x0 = t0x0 +t−1x1,
x1 = t1x0 +t0x1 +t−1x2,
...

...
...

...
. . .

Using generating functions and combining the terms of (19) by columns, we
obtain

(18)

χ−1(z) =

∞
∑

k=0

xkz
k = z0(t0x0 + t1x0z + t2x0z

2 + . . .)

+z0(t−1x1 + t0x1z + t1x1z
2 + . . .)

+z1(t−1x2 + t0x2z + t1x2z
2 + . . .)

+z2(t−1x3 + t0x3z + t1x3z
2 + . . .)

+ . . .

=
1

z

(

τ−1(z)χ−1(z)− t−1x0
)

, −1 ≤ z ≤ 1.

From (18) we obtain

(19) χ−1(z) =
t−1x0

τ−1(z)− z
, −1 < z < 1.

As in (5), the generating function χ−1(z) depends on the choice of x0.
The subindex (−1) in the functions χ−1(z) and τ−1(z) is max{j : t−j > 0}.

3.2. The case when T is presented by (13). In the case when the system
of equations is presented by (13), the system of recurrence relations is as
follows:

(20)

x0 = t0x0 +t−1x1 + . . . +t−nxn,
x1 = t1x0 +t0x1 +t−1x2 + . . . +t−nxn+1,
...

...
...

...
...

...
. . .

Similarly to that given before, we are to derive the expression for the gen-
erating function χ−n(z) =

∑∞
k=0 xkz

k, where subindex (−n) of the function
χ−n(z) is max{j : t−j > 0}. The derivation of χ−n(z) is provided by the
same scheme as that in (18). The expression for χ−n(z) is

(21) χ−n(z) =

∑n−1
k=0 xk

∑n
j=k+1 t−jz

n−j+k

τ−n(z)− zn
, −1 < z < 1.
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3.3. Existence of a positive solution of equation (2) under different

assumptions on the matrix T . The generating function χ−n(z) in (21)
is expressed via arbitrary chosen n positive parameters x0, x1,. . . , xn−1 such
that a solution of (2) is positive.

We now consider the two cases
∑∞

k=0 tk−n ≤ 1 and
∑∞

k=0 tk−n > 1.
We demonstrate first that in the case

∑∞
k=0 tk−n ≤ 1, positive parameters

x0, x1,. . . , xn−1 guaranteeing a positive solution of equation (2) always exist.
Indeed, setting x0 = x1 = . . . = xn−1, we obtain

(22) xn =
(1− t0 − t−1 − . . .− t−n+1)xn−1

t−n

≥ xn−1.

Then,

xn+1 =
(1− t1 − t0 − . . . − t−n+2)xn−1 − t−n+1xn

t−n

≥
(1− t1 − t0 − . . . − t−n+1)xn−1

t−n

= xn.

This procedure continues, and by induction we obtain xn−1 ≤ xn ≤ . . .. So,
the sequence xk, k = 0, 1, . . . is monotone increasing. Note that in the case
n = 1, due to the same derivation as above, if

∑∞
k=0 tk−1 ≤ 1, then the

sequence xk, k = 0, 1, . . . is always monotone increasing.
Within the same case

∑∞
k=0 tk−n ≤ 1, assume now that x0, x1,. . . , xn−1

are chosen in some free way under which the solution of (2) is positive. Let
xm0

, 0 ≤ m0 ≤ n − 1, be a largest among x0, x1,. . . , xn−1. Then among
the values xn, xn+1,. . . , xn+m0

there is a value that is not smaller than xm0
.

Indeed, if we assume that xn < xm0
, xn+1 < xm0

,. . . , xn+m0−1 < xm0
, then

for xn+m0
we obtain

xn+m0
=

xm0
(1− t0)−

∑

0≤j≤n+m0−1
j 6=m0

xjtm0−j

t−n

>
xm0

(

1−
∑n+m0−1

j=0 tm0−j

)

t−n

> xm0
.

Similarly, if m1 = {minn : xn ≥ xm0
}, then among xm1

, xm1+1,. . . , xm1+n

there exists the value that is not smaller than xm1
that is denoted by xm2

.
This procedure can be continued, and one finds the limit x∗ = limi→∞ xmi

,
that is lim supk→∞ xk. The conditions under which this upper limit is finite
follows from Theorem 4, which is proved in the next section. Note that
mi+1 −mi ≤ n for any i ≥ 1.

In the case when
∑∞

k=0 tk−n > 1 a positive solution of equation (2) gen-
erally does not exist. For instance, if t0 > 1, then from the first equation of
(20) we obtain

t−1x1 + . . . + t−nxn < 0,
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that means that at least one of x1, x2,. . . , xn must be negative.
Below we demonstrate a particular case of the matrix T under which a

positive solution of (2) does exist.
Indeed, assume that

∑∞
k=1 tk−n < 1, and as earlier set x0 = x1 = . . . =

xn−1, x0 > 0. If
∑∞

k=0 tk−n > 1, we set t′−n = 1 −
∑∞

k=1 tk−n, and denote
t−n = ct′−n, c > 1.

Now consider two equations. The first original equation x = Tx, in which
∑∞

k=0 tk−n > 1, and the second one u = T ′
u in which

∑∞
k=1 tk−n+t′k−n = 1,

and u =







u0
u1
...






. That is, the elements tj, j = −n + 1, j = −n + 2, . . . in

both matrices are the same, but the element t−n in the matrix T and the
corresponding element t′−n in the matrix T ′ are distinct. For positive initial
values set u0 = u1 = . . . = un−1 = x0 = x1 = . . . = xn−1. Then, a
positive solution of the equation u = T ′

u exists and not decreasing, i.e.
un−1 ≤ un ≤ . . .. From the equations

uk = tku0 + tk−1u1 + . . .+ t0uk + . . .+ t−n+1uk+n−1 + t′−nuk+n

xk = tkx0 + tk−1x1 + . . .+ t0xk + . . .+ t−n+1xk+n−1 + t′−n(xk+n/c),

we obtain a clear dependence between the terms xk, k = n, n + 1 . . . and
corresponding terms uk, k = n, n+1 . . . through the constant c. Since c > 1,
then xk < uk and xk is positive. Hence a solution of equation (2) is positive.

With similar arguments, one can prove the existence of a positive solutions
under the more general assumption:

∑∞
k=0 tk < 1 and

∑∞
k=0 tk−n > 1.

Under these assumption we set
∑n

k=1 t
′
k = 1 −

∑∞
k=0 tk and t−k = ct′−k,

where c > 1 is a unique constant that is found from this system of equations.
The following arguments are similar to those given above for the particular
case.

4. Proof of Theorem 4

4.1. Lemmas. The proof of the major statements of the theorem are based
on the Tauberian theorem of Hardy and Littlewood [2, 3], the formulation
of which is as follows.

Lemma 7. Let the series
∞
∑

j=0

ajz
j

converges for −1 < z < 1 and suppose there exists γ > 0 such that

lim
z↑1

(1 − z)γ
∞
∑

n=0

ajz
j = A.
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Suppose also that aj ≥ 0. Then, as N → ∞,

N
∑

j=0

aj ≍
A

Γ(1 + γ)
Nγ ,

where Γ(x) is Euler’s Gamma-function.

In addition to this lemma we need one more lemma presented below,
where we assume that

∑∞
k=0 tk−n = 1.

Lemma 8. Let w be a positive value. Consider the equation

(23) zn = wτ−n(z),

and assume that (14) is fulfilled.

(a1) If w = 1 and γ =
∑∞

k=1 ktk−n ≤ n, then there are no roots of

equation (23) in the interval (0, 1).
(a2) If w = 1 and γ =

∑∞
k=1 ktk−n > n, then there is a root of equation

(23) in the interval (0, 1).
(a3) If w > 1, then there are no roots of equation (23) in the interval

(0, 1).
(a4) If w < 1, then there is a root of equation (23) in the interval (0, 1).

Proof. From (23) we have the equation z = n
√

wτ−n(z). The function
n
√

wτ−n(z) is increasing since τ−n(z) is increasing, and its derivative, ac-
cording to assumption of the lemma, is increasing as well. Taking into
account that t−n > 0, in cases (a1) and (a2) we easily arrive at the required

statements, since the difference z − n
√

τ−n(z) in point z = 0 is negative and
in point z = 1 is zero. The derivative of this difference in point z = 1 is
equal to 1− (1/n)τ ′−n(1). It is nonnegative in case (a1) and strictly negative
in case (a2). In case (a3) the required result follows from the fact that under

condition (14) the difference z−w n
√

τ−n(z) is negative for all 0 ≤ z ≤ 1. In

case (a4) the result trivially follows, since the differences z − w n
√

τ−n(z) in
points z = 0 and z = 1 are of opposite signs. �

4.2. Proof of the theorem. Under assumption (i) of the theorem, we have

(24)

∞
∑

k=0

tk−n = w

∞
∑

k=0

t′k−n,

where w > 1 and
∑∞

k=0 t
′
k−n = 1. Then, according to statement (a3) of

Lemma 8, the denominator of the fraction on the right-hand side of (21) is
nonzero for all z ∈ [0, 1] and hence the series χ−n(z) is continuous in [0, 1].
As z → 1, we have

∑∞
k=0 xk = limz↑1 χ−n(z) < ∞. Then limk→∞ xk = 0,

and the statement of the theorem under assumption (i) is proved.
Under assumption (ii), Lemma 7 is applied with γ = 1. We have

(25) lim
z↑1

(1− z)χ−n(z) = lim
z↑1

(1− z)

∑n−1
k=0 xk

∑n
j=k+1 t−jz

n−j+k

τ−n(z)− zn
.
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If condition (15) of the theorem is satisfied, then the L’Hospital rule yields

lim
z↑1

(1− z)χ−n(z) =

∑n−1
k=0 xk

∑n
j=k+1 t−j

n−
∑∞

k=1 ktk−n

.

Then the conditions of Lemma 7 are satisfied, and according to that lemma
for large N we have

(26)
N
∑

j=0

xj ≍

∑n−1
k=0 xk

∑n
j=k+1 t−j

n−
∑∞

k=1 ktk−n

N.

Next, it was shown in Section 3.3 that there is an increasing sequence of
indices m0, m1, . . . such that limi→∞ xmi

= lim supk→∞ xk, and for any i,

mi+1 − mi ≤ n. This enables us to conclude that
∑N

j=0 xmj
= O(N), and

hence (26) implies lim supk→∞ xk < ∞.
In the particular case n = 1, the sequence xk, k = 0, 1, 2, . . . is non-

decreasing (see Section 3.3), and hence there is the limit of this sequence
as k → ∞. This limit is finite, if

∑∞
k=1 ktk−1 < 1, and according to Abel’s

theorem

lim
k→∞

xk = lim
z↑1

(1− z)χ−1(z) =
x0t−1

1−
∑∞

j=1 jtj−n

.

Relation (16) follows.
If
∑∞

k=1 ktk−n = n, then the L’Hospital rule yields infinite value in limit.
So, under the assumption

∑∞
k=1 ktk−n = n, the sequence x0, x1,. . . diverges

for any positive initial values of x0, x1,. . . , xn−1. If
∑∞

k=1 ktk−n > n, then
according to statement (a2) of Lemma 8, the fraction of the right-hand side
of (25) has a pole, and hence the sequence x0, x1,. . . diverges. Statements
(ii) of the theorem are proved.

Under assumption (iii) of the theorem we have (24), where w < 1 and
∑∞

k=0 t
′
k−n = 1. Then, according to statement (a4) of Lemma 8, the frac-

tion of the right-hand side of (25) has a pole. Hence the sequence x0,
x1,. . . diverges in this case as well. Statement (iii) follows. The theorem is
proved.

Appendix A. Proof of Theorem 2

Let

(27) P

{

sup
1≤r<∞

(Nr − nr) ≤ k | sup
1≤r<∞

(Nr − nr) ≥ 0

}

= xk.

Note first that the condition Eν1 < n guarantees the existence of the dis-
tribution of sup1≤r<∞(Nr − nr), and hence the existence of the conditional
distribution in (27).
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Following the arguments similar to those in [7, p. 17, formula (22)], by
the formula for the total probability for k ≥ 0 we obtain

P{Nr ≤ r + k for r = 1, 2, . . . ,m+ 1}

=

k+n
∑

j=0

tj−nP{Nr ≤ r + k + n− j for r = 1, 2, . . . ,m},

where tj−n = P{ν1 = j}, j = 0, 1, . . ..
Now, letting m to increase to infinity, we arrive at the required recurrence

relation.

References

[1] Abramov, V. M. (2019). Optimal control of a large dam with compound Pois-
son input and costs depending on water levels. Stochastics. 91(3): 433–483.
doi.org/10.1080/17442508.2018.1551395

[2] Hardy, G. H. (2000). Divergent Series, 2nd ed. Providence: AMS Chelsea Publishing.
[3] Hardy, G. H., Littlewood, J. E. (1914). Tauberian theorems concerning power series

and Direchlet’s series whose coefficients are positive. Proc. London Math. Soc. 13:
174–191. doi.org/10.1112/plms/s2-13.1.174

[4] Kelley, C. T. (1995). Iterative Methods for Linear and Nonlinear Equations. Philadel-
phia: SIAM.

[5] Krasnosel’skii, M. A., Vainikko, G. M. Zabreiko, P. P., Rutitskii, Ya. B., Stetsenko,
V. Ya. (1972). Approximate Solutions of Operator Equations. Groningen: Wolters-
Noordhoff Publishing Co.

[6] Leontief, Wassily. (1986). Input-Output Economics, 2nd ed., Oxford: Oxford Univer-
sity Press.
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